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The fascination of fluid mechanics 

By D. H. PEREGRINE 
School of Mathematics, University of Bristol, Bristol BS8 lTW, England 

Two topics are discussed in order to illustrate the author’s own enjoyment of fluid 
mechanics. The first and longer discourse is about splashes. It makes no attempt a t  
completeness but includes a little new research. The second part deals briefly with 
many variations on the theme of flow in pipes. 
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1. Prologue 
To be fascinated by something implies that  one is attracted to it, possibly in spite 

of some less pleasant features. For those of us who work in the domain of fluid dynam- 
ics the less pleasant features may be tedious time-consuming analysis or experiments, 
or the difficulties one meets in trying to understand or predict fluid flows. This is 
enough of the less pleasant side; difficult problems attract people by the challenge of 
their existence. Even tedious work can be a ‘restful’ interlude between more demand- 
ing tasks. This essay gives an indication, rather than an explicit account, of the ways 
which fluid mechanics fascinates its author. 

What a person enjoys and is interested in is very much a matter of individual taste. 
This shows up 1-ery clearly in their choice of music (one aspect of fluid mechanics !). 

3-2  
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Some people like to ‘feel’ the sound, one choosing the strongly amplified popular 
music that has become available with modern technology, another choosing ‘old 
technology’ and revelling in the thunderous interplay of notes produced by a large 
organ and their echoes from the massive structure of church or cathedral. Others 
prefer to listen to the varied talents of the human voice, and there are only a few who 
do not gain enjoyment from some sort of music. 

Our perception of the world is dominated by our vision. The commonest fluids, air 
and water, are transparent, so we most readily see the interface between them. The 
air-water interfaces of clouds, and rain, of streams, rivers, lakes and the seas are vital 
elements in most of the natural scenes we enjoy. The first topic to be dealt with in this 
essay is that  of splashes, perhaps the most eye catching of interfacial phenomena but 
one which has received little attention. Parts of this section have ‘grown’ in the 
preparation of this work. Indeed, one portion has grown to the point where it had to 
be cut out and written up separately. This is a pity, in a way, since it refers to both 
the papers contributed to the first volume of this journal by its editor. There are a 
number of questions raised and problems left untouched in this section. I hope some 
readers may care to study them further and let me know how they fare. 

The second topic appears more mundane: the flow of fluid in pipes. However, there 
is a wealth of variety and interest in such flows which may not be immediately apparent 
and is briefly sketched. 

2. Splashes 
One of the simplest fascinating aspects of water is the ease with which it can be 

splashed. Babies a few weeks old can delight in splashing in their baths. Once they are 
mobile they can think of little better than playing with liquids, preferably muddy, 
pouring them and splashing them. Older children and exuberant adults also delight 
in splashing each other in play, or throwing stones to make splashes in otherwise 
tranquil water. 

As well as the active pleasures of water splashing, there is appreciable passive 
appreciation of it. It may come indirectly from the pleasure of watching young 
children a t  play but can also come directly. Among the most awesome and spectacular 
displays for spectators on earth are large waterfalls. The fall of water is only part of 
the spectacle. Usually the water is splashing long before it hits the bottom and this 
contributes to the noise and ground vibration which can make a great fall truly 
fascinating. At coastal locations also much pleasure can be gained by watching waves 
with their splashing white breakers as they come up a beach and the splashes made 
as they hit cliffs or coastal structures. 

To the more professional eye a splash may seem to be a very simple example of 
fluid mechanics. The water is projected into the air and soon breaks into drops which 
follow a trajectory which is more or less determined by the methods of particle mech- 
anics. To some extent this view does survive a closer investigation, nevertheless 
there are aspects of, and diversions from, the problem which add interest to it. 
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2.1. Breaking u:ave$ 

My own technical interest in splashes arises from attempting to  understand the fluid 
mechanics of water waves. It is now a few years since we have been able to  describe 
in detail the water motion in a wave as it is about to  break (Longuet-Higgins & 
Cokelet, 1976). However we do not understand why a jet of water is projected from the 
wave crest in such a characteristic manner. For an account of our present understand- 
ing, which is more descriptive than predictive, see Peregrine, Cokelet & McIver (1980). 
The splash first arises when the falling jet of water from the crest of the wave hits the 
undisturbed water in front of it. Sometimes the splash rises to a greater height than 
the original wave. 

To study such a splash it is natural t o  commence by making as much simplification 
as is possible whilst still retaining the dominant physical influences. If the scale of 
the breaking jet is large enough it seems quite reasonable to neglect viscosity and 
surface tension. The effect of the air can also be neglected, although it is easy to see 
that the presence of air is often an important feature. 

During and shortly after the first impact of a falling jet on undisturbed water the 
effect of gravity is likely to  be small. Gravity certainly affects the trajectory of the 
falling and the splashed water, but need only be taken into account in determining 
conditions before impact, and in the subsequent behaviour once conditions of pro- 
jection of the splash are known. 

Even with simplifications like these the problem is still a difficult, two-dimensional 
unsteady free-surface problem. We still know insufficient about the falling jet to make 
a highly detailed analysis worth while. Further simplification is possible. 

2.2. Mathematical model of a splash from a thin layer of water 

A simple, not entirely unrealistic, way of describing the jet is as a ‘moving waterfall’ 
which is ‘switched on’ a t  some initial instant. Suppose it moves with constant velocity 
V ,  relative and parallel to the water it hits and has constant properties once it hits the 
water. By further assuming the jet is thin it is readily characterized by its thickness 
h, and its water velocity parallel to  its surface, u,, immediately above the impact 
point. This is a one-dimensional representation which could be improved by ietting 
V,, h, and u, be functions of time if more were known about the jet. 

The impact and splash is still two-dimensional, but by taking a special case this 
too can be made one-dimensional. That is if the depth of undisturbed water ho is small 
compared with the dimensions of the breaking wave forming the falling jet. That is 
is ulB (gh,):. This is often realistic for waves breaking on steep beaches. The neglect 
of gravity in the impact process means that the slope of the beach or any uniform 
velocity in the water does not enter this aspect of the problem. 

A one-dimensional model describes the water just by its depth or thickness and its 
velocity. Thus in figure 1 a possible initial development of the splash is shown. The 
originally undisturbed water is taken to have depth do and to specify a reference 
frame with zero velocity. The velocities zi,, u2 and u, are velocities of the projected 
or falling fluid relative to its surface while V,, 8, and T73 are the velocities of the points 
of impact or projection. Thus at impact the velocity of the approaching water is 
( V ,  - u, cos A,, - u1 sin A,)  in this reference frame. The velocities v, and v2, depths 
d, and d ,  and angles A, ,  A, ,  A, are all defined in figure 1. 
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FIGURE 1. One-dimensional model of the splash of a ‘moving waterfall ’ onto a thin layer 
of water, defining depths, d,, thicknesses, h,, velocities, ui, Vj, and angles A i .  

This model is complete once relations are found between the three streams, a t  the 
impact point and the projection points. These relations a,re readily found once it is 
noted that a t  each of these points the configuration is similar to that of the sym- 
metrical impact of two plane jets (e.g. see Milne-Thomson 1960, § 11.42, interestingly 
it is noted in 3 1 I .40 that  only the symmetric solution is determinate). I n  the reference 
frame moving with the impact or projection point the flow in that neighbourhood is 
steady. Bernoulli’s theorem holds along stream lines and with our neglect of gravity 
reduces to constant velocity on surface streamlines. That is 

and u3 = v,- v, = v3. 

The flow into and away from these points must conserve mass and this reduces to 

h, = d, + d,, (4) 

h, = dl+d,, (5) 

and h, = d ,  + do. (6) 

Similarly the rate of flow of horizontal momentum is conserved, which simplifies to 

-h,cosA, = d1--d, (8) 

and 
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FIGURE 2. Alternative splash configurations. 

These nine simple algebraic relations mean that all quantities can be found in terms 
of the ‘initial’ values do, h, ,  u,, V ,  and A,. The velocities are 

2), = u1 + V,, 2)z = u1 - V,, 

v* = u, = Q(Ul+ V,), 

v, = ug = Q(ul-  V,). 

(1% ( 1 1 )  

(12) 

(13) 

The linear relations between the velocities and our assumption of constancy means 
that the distances between impact and projection points simply increase linearly with 
time after the initial impact. This indicates that a corresponding fully two dimensional 
problem might be solved using variables ( x / t ,  y / t ) .  

The model configuration proposed in figure 1 only makes sense if all the velocities 
are positive. This requires u, > V,. If u1 < V ,  no water is sent ‘backwards’ from the 
point of impact. Also, V ,  - 8, = &(u, - V,) is also negative and the projection point 
cannot travel ahead of the impact point. A rough estimation indicates that u1 > V ,  
and u1 < V ,  are both possible for breaking waves. Perhaps the configuration sketched 
in figure 2 ( a )  may be relevant in the case u1 < V,. 

Surprisingly, the configuration of figure 2(a )  is also determinate in a frame of 
reference where the motion is steady. But, from Bernoulli’s theorem 

u1 = u, = J7*, 
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FIGURE 3. Splash from a falling cylindrical jet with negligible gravity; a section through 
a radial plane, a t  three times. The broken lines show particle trajectories. 

so that it can only apply for the special case u, = V,. The indeterminate configurations 
of figures 2 ( b )  and (c) suffer the same defect. 

One, as yet unmentioned, approximation ought to be brought in here. All the above 
analysis has assumed irrotational flow for the various parts of the splash. However 
the flow is not generally irrotational. When two bodies of water meet, a vortex sheet 
forms at  the dividing surface. Its strength depends on the relative tangential velocity 
at each point just before contact. Thus the model under discussion strictly only applies 
when u1 cos A ,  = V,, otherwise some account should be taken of the vortex sheet. 

One case where tthe model should hold is for water which simply drops vertically 
onto a shallow layer of water, The simplest experiment of this sort is to turn a tap on 
when there is a thin layer of water beneath it. For such an axisymmetric case the 
splash arises from a circular line of increasing radius. The spreading horizontal sheet 
of water pushing up the splash has an almost constant velocity if viscous effects are 
ignored but a decreasing thickness, d, (corresponding to d, in figure 1). Since from 
equations ( 5 )  and (8) - -  

do - dl cosA = - 
do + d,’ 

the angle of projection of the splash varies with position. Here it is assumed that 
conditions on the circular projection line are adequately described by supposing it 
to be locally plane. 

If the constant volume flux of the axisymmetric falling jet is Q, its velocity at  
impact with a horizontal plane is u, and r ,  z, t are radial and vertical co-ordinates and 
time then the problem can be made dimensionless by putting 

and 

Then we have d, = d,/R. 
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FIGURE 4. Possible streamlines at splash separation with a vortex sheet, shown as a 
broken line. Other dividing streamlines are shown with lines of dobs. 

Assuming a simple ballistic trajectory for liquid particles once projected upward 
leads to an equation: 

where 0 < T ,  < T ,  for the shape of the projected splash. It depends on a single para- 
meter G = 2gQ/(nu&) which gives a measure of the significance of gravity. Figure 3 
shows the shape of the splash ( 1 8 ) ,  for G = 0, a t  T = 0.5,l.O and 2.0. The jet falls down 
the 2 axis. The broken lines indicate the trajectories of liquid particles. There would 
be little difference in the shape for small values of G. It is possible to calculate the 
thickness of the splash but this has not been done. 

2.3. Viscous effects in the unsteady separation of a th,in splashing layer 

When a vortex sheet is formed it is more difficult to find a steadily moving flow 
pattern to describe the projection of a splash. There can only be a stagnation point 
on one side of the vortex sheet. Some possible streamlines are sketched in figure 4, 
which includes sketches drawn with the 'hindsight ' of having considered viscous 
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FIGURE 5 .  Inviscid flow near a stagnation point with vorticity 111 !J b. 

flows; but, after all, viscosity or instabilities cannot be neglected in a real vortex sheet. 
As an initial assumption let us suppose the flow is such that the effects of viscosity 

are only rumulative. That is, viscosity causes the development of a velocity profile 
in outward spreading water but the splash separation is almost inviscid since its 
time scale is shorter. The flow is separating from a moving point on the plane so that 
it is an example of ‘unsteady separation’. However, if we take the case where the 
simple model of the previous section is appropriate then it can reasonably be con- 
sidered stationary in the frame of reference moving with the separation point. 

For separation to occur a streamline must split. This can only happen a t  a stagnation 
point. It just does not seem possible for a smooth bifurcation of a streamline to occur 
in normal circumstances. For example, see the discussion of low-Reynolds-number 
eddies by Jeffrey & Sherwood (1 980). Yet examples of bifurcating streamlines do 
occur in inviscid flow solutions; for example, Hopkinson (1888) gives some free- 
streamline examples and Pierrehumbert (1980) finds an example a t  the boundary 
between irrotational and rotational flow for a translating vortex pair. 

The liquid which is a t  rest relative to the plane has zero vorticity while the spread- 
ing liquid has some viscosity-induced vorticity. Consideration of the directions from 
which fluid approaches the dividing streamline in the steady frame indicates that this 
streamline also divides the two regions of different vorticity . An inviscid solution for 
flow near a stagnation point dividing two regions of vorticity is readily found. The 
stream function 

in y < O  

Axy+$Qy in 

gives irrotational flow in y < 0 and flow with vorticity - Q in y > 0. Across the divid- 
ing streamline y = 0, pressure and velocity are continuous. The flow pattern is 
sketched in figure 5. The streamline which approaches the stagnation point in the 
upper half-plane is y = - 2Ax/Q. 

After a little consideration this solution leads to the sketch of a plausible streamline 
pattern given in figure 8 for the flow in the ‘steady’ reference frame. This clearly 
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FIGURE 6. Sketch of the inviscid separating flow field in the frame of reference moving 

with the splash, when a velocity profile has developed in the incoming flow. 

indicates some of the problems of unsteady separation. I n  particular, the separation 
streamline S is not readily identified in the incoming flow, because some ofthe incoming 
fluid returns from the vicinity of the stagnation point. Thus, the streamline which 
‘enters ’ with zero relative horizontal velocity is not the dividing streamline. Some of 
the fluid which was a t  rest is being overrun by the splashing liquid. Indeed, if the 
Reynolds number of this portion of the flow is really large the velocity profiles along 
AB could look like that sketched in figure 6. 

If the viscous effects are entirely confined to a thin boundary layer, these effects 
are less prominent but must still exist. At a relative stagnation point in the boundary 
layer the vorticity !2 must be very large compared with the rate of strain, A ,  so that 
the streamlines through that point enclose a very small angle. The flow almost cer- 
tainly looks like the examples of boundary-layer ‘separation ’ off a rotating cylinder 
photographed by Iioromilas 8: Telionis (1980, figures 10 and 1 l ) ,  and Morton (1980, 
private communication). 

Looking a t  this type of flow field it is difficult to see the relevance of the criteria for 
unsteady separation suggested by Moore, Rott and Sears who add a condition au/ay = 0 
a t  the relative stagnation point (see for example the review by Williams 1977, as well 
as Koromilas & Telionis 1980). The case where the simple model of § 2 . 2  is appropriate 
is one where a solution for the outer potential flow exists (Milne-Thomson 1960, 
3 11.34) and is probably appropriate if the separating streamline emerges from the 
boundary layer with only a narrow wake-like region of vorticity. Hence it may prove 
valuable for a deeper study of unsteady separation. 

I n  general there will be a shear across the region of the dividing streamline. If 
viscous effects are strong this soon diffuses across the whole jet. If they are weak the 
resulting turbulent mixing layer will rapidly have the same effect and probably begin 
to  break up the projected sheet of liquid. 
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2.4. An exact solution of the Navier-Stokes equations 

The inviscid stagnation point flow described by equation (19) can easily be extended 
to include viscosity. The flow toward the separating streamline acts against the 
diffusion of vorticity. A trial velocity field of 

inserted in the Navier-Stokes equations, leads to an exact solution with vorticity, 
U‘(y), having a smooth error function profile between any two constant values as 
y -+ f co. That is, 

U’(y) = Berfc [ y ( A / B v ) ]  + C, (21) 

where v is the kinematic viscosity and B and C are constants determined by the 
vorticity at y = _+ CO. 

It is a pleasant surprise to find a simple exact solution of the Navier-Stokes equa- 
tions. Further research leads, via the comprehensive article by Berker (1963)) t o  
Jeffery (1915) as the first person to find this solution. His opinion was, ‘Solutions I, 
I1 [this solution], and I V  lead to some interesting sets of streamlines. They cannot, 
however, be realized physically, and they seem to be of little importance’. 

However, the solution may be of some value in the context of unsteady separation 
and there is another flow where it may also be relevant. This is the steady laminar 
high-Reynolds-number flow about a cylindrical bluff body. Smith (1979) presents a 
detailed theoretical model of such a flow with particular emphasis on the separation 
region and the size of the eddies which form behind the cylinder. One admitted weak 
point in this account is that the rear stagnation point and internal flow of the eddies 
are not fully elucidated. 

At the rear of the eddies flow is converging towards the dividing streamline from 
both sides with vorticity of opposite signs. Thus the flow in the neighbourhood of the 
stagnation point should be described by the solution (21) with appropriate constants. 

Fornberg ( 1  980) investigates the flow about a circular cylinder by accurate numeri- 
cal integration of the Navier-Stokes equations. The results of the computations are in 
striking disagreement with Smith’s (1979) hypothesis about the eddies at  the highest 
Reynolds numbers calculated. A note discussing this flow has been prepa.red (Peregrine 
1981). 

2 .5 .  The weakest splashes 

After the digression of the previous section we return to the theme of splashes and 
briefly consider the very weak splashes formed by a single drop of liquid dropped from 
a height much less than a metre. There is no discernible splash if a drop is placed on the 
surface of water, yet even then there is appreciable water motion. If there are no strong 
surface active effects the combined effects of surface tension and gravity act to create 
a vortex ring. This is illustrated in Batchelor (1967)) plate 21, for a drop starting 10 mm 
above the surface. The vorticity may be due to the relative velocities of surfaces as 
they meet, but could also be due to the effects of surface tension immediately after 
contact, when there must be some near-singular motion. (See also $3.2 of this essay.) 

I shall refrain from a digression into the many, varied and unexpected properties 
of vortex rings. Some of these are quite well known. However, the further development 
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of the vortex ring one gets from such drops is worth noting. Clearly, to visualise the 
flow, dye or some other substance must be used. Small concentrations of such a marker 
substance are seen to ‘tighten up’ at a few points around the ring and form further 
small rings which descend a few centimetres before they too are subject to the same 
fragmentation. A whole cascade of such events can form in suitable circumstances. 
It is not clear whether a density difference in the fluids is necessary to  develop this 
beautiful motion, but it does seem likely. It is demonstrated in the opening sequence 
of the film ‘Flow instabilities ’ by Mallo-Christensen (1959). I n  the accompanying 
booklet he recommends a cream (50 %)-milk (50 yo) mixture for drops falling into 
cold water. A drop of ink is often satisfactory. 

If the same experiment is performed with a detergent solution as the receiving 
fluid, the drop and the fluid frequently do not coalesce. The drop may bounce and 
run freely over the surface. A steadily dripping tap falling into a washing-up bowl 
can produce quite a regular supply of these free drops. Although the liquids do not 
make contact through the surface film of detergent the bulk liquid surface supports 
the weight of the drop and is thus depressed beneath it. Hence drops att,ract each 
other and merge if they do not contain detergent. On the other hand bubbles sitting 
on the surface repel drops since surface tension raises the surface in their vicinity. It 
is an intriguing dynamical system to see, with drops and bubbles repelling each other 
but being mutually attracted. The drops have substantial inertia compared with the 
bubbles. (A simple approximation for the attractive force between bubbles on a 
surface is made by Nicolson 1948.) Unfortunately the lifetime of drops on a surface is 
not often more than about ten seconds. If you are lucky you may see a bubble riding 
on top of a drop. 

The same property of drops bouncing off a ‘liquid’ surface is even more readily 
demonstrated with drops blown onto a bubble formed from the same liquid. Drops 
can also go through the bubble without upsetting it. The same thing also happens 
with bulk liquid and can best be observed if it is in a transparent container. Drops 
which enter a liquid without coalescing with it form ‘anti-bubbles’; that is, a thin 
spherical film of air separating two regions of water. The most notable properties of 
anti-bubbles compared with bubbles are their appreciable inertia. Their life time is 
similar to, or perhaps longer than, that  of drops on a surface, but not as long as that 
of bubbles. Baird (1960) describes theory and experiment for anti-bubble life-times. 
He notes they are more stable in fresh tap water which is supersaturated with air 
which helps maintain the air film by coming out of solution. 

2.6. The projected water 

First consider what happens t o  a relatively compact mass of water projected into the 
air. For moderate velocities and small massse, about 1 gm, the air itself is unimportant 
and the liquid is in free fall. Thus if the water has little motion relative to  its centre of 
mass the dominant force on it is surface tension and it is likely to  oscillate about a 
spherical shape. 

On the other hand larger masses of water, of 100 gms or more are unlikely to be 
fully constrained by surface tension forces. The inertia of the fluid due to pre-existing 
internal motion, which might be due to turbulence or to details of its projection, will 
dominate. There is no significant restraining force acting, so any surface portion of the 
mass which initially has a velocity directed away from the main bulk of water con- 
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(a)  

FICTJRW 7.  A projected mass of %ater (a )  initially, (6) after some time. 

FIGURE 8. A ‘water bubble’. 

tinues to  move away and the water spreads out into sheets and filaments of water. 
See figure 7 for a before and after sketch of such motion in two dimensions. It is 
probably the pre-existing turbulence in a river which cause seven thick water-falls to 
break up into spray quite rapidly. 

This spreading of a fluid mass can be readily demonstrated with a small spade, or 
large ‘seaside’ spade, which has no raised edges. It should be held with the blade 
horizontal about 2-3 ern beneath the surface of still water. Then with a short sharp 
motion project the mass of water above the blade into the air, in order that  it should 
reach a height of about one metre. The air should be still, or else the projection should 
include a component of velocity in the downwind direction. 

During the initial acceleration, while the water is on the spade, it begins to flow 
towards the edges of the spade’s blade. Once i t  is projected and is in free fall that  
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motion continues and by the time the water reaches the top of its trajectory it has 
spread out into a large sheet several times its original horizontal extent. This large 
sheet then descends, trapping a large volume of air, see figure 8. My children consider 
this to  be a fine game a t  the seaside and have christened the resulting sheets ‘water 
bubbles ’. It takes little practice to produce water bubbles almost a metre across. I n  
still air they often maintain their integrity until they are thin enough to show inter- 
ference colours. It is also often possible to  see the way in which such a sheet of water 
breaks up into drops. 

This occurs mainly a t  the edge. A sheet of water appears to be quite stable unless 
it is very thin, or travelling so fast that  there is strong interaction with the air. A full 
account of the disintegration of thin fast-moving sheets is given by Dombrowski 
& Fraser (1954). 

At the free edge of a sheet of water, surface tension acts to minimize the surface 
area. This leads to the formation of a cylindrical bulge moving into the sheet. This 
can be described by analysis similar to that of Fraser et al. (1 962) for the growth of a 
hole. Short waves can often be seen ahead o i i t ;  these cause a ‘wave resistance’ to its 
motion but are unlikely to be more than minor feaiures. An isolated cylindrical column 
breaks up into drops due to  a classical instability described by Rayleigh (1945, $357 
onwards). It appears that  this cylinder on the edge of a sheet of liquid suffers from the 
same instability arid breaks into drops. 

The best known examples of this instability are the ccrowns’ which form in the 
initial splash from a drop. These were first photographed in the pioneering work by 
Worthington (1897, 1908). They show up best when the drop falls on a very thin film 
of liquid. 

As well as a primary impact splash, most splashes caused by a single drop or other 
mass have a secondary phase as water returns to the point of impact and rises in a 
symmetrical column. For a single drop this usually breaks up to project another 
drop, of almost the identical fluid, back up into the air. If the original drop falls into 
water near the edge of a full water container the resulting secondary splash is asym- 
metrical and can consistently throw the second drop over the side of the container. 
This is very probably an effect of the same kind as the ‘microjet’ which is directed 
towards a nearby wall as cavitation bubbles collapse. It appears that cavitation 
damage is not caused by the jet but by shock waves (see Fujikawa & Akamatsu 1980). 

For most splashes the main effect of the air is its influence on the trajectories of 
sheets and drops of water due to the drag caused by relative motion. At the same time 
there is an equal and opposite drag on the air changing its motion. This mutual inter- 
action is most apparent near the base of waterfalls where the falling water induces a 
substantial air current which spreads out horizontally a t  the base carrying drops of 
water outward. But this is not all, one of the more spectacular air-water interactions 
occurs when the relative velocity between a drop and the air increases beyond the 
range normal in everyday splashes. Large water drops explode ! 

2.7. Exploding water 

Exploding water is readily demonstrated from any building three or more floors high. 
Just  project a large drop out of the window. I find that the easiest way to do this is to 
take a plastic coffee cup with a centimetre or so depth of water a t  the bottom. With a 
little practice i t  is possible to throw a drop of about 1-2 ern diameter slightly upward. 
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One can see it oscillate in shape at  the top of its trajectory and as it starts to descend. 
Then, after falling about 5 or 6 metres, it ‘explodes’ into a shower of smaller drops. 
Drops which are just too small to explode simply bifurcate. 

What happens is that the air pressure deforms the drop until it is like an open bubble 
which becomes so thin that it bursts. The bubble is open at  its bottom end, see the 
article by Lane & Green (1956). The resulting smaller drops spread out with quite an 
appreciable transverse velocity. It is not clear to me how this transverse velocity, 
which gives the appearance of an explosion, arises. 

It is this type of air-water interaction which ensures that rain drops have a maxi- 
mum size and that high waterfalls almost entirely break up into small drops. Other 
examples of natural splashes rarely reach such relative velocities, however photo- 
graphs of very large breaking waves (perhaps > 6 m high) show a character to the 
spray which is very similar to the spray caused by real explosives. It may be that 
such breakers have passed some critical relative air velocity threshold. 

2.8. Large splashes 

Consideration of size leads to the largest splashes I am aware of. The largest possible 
are of a cosmic scale which we are unlikely to see. Impacts between celestial bodies do 
occur. The more recent of the large impact craters on the moon show traces of the 
splashes that occurred. In particular the bright rays from the crater Tycho stretch 
2000 km across the face of the moon. It is also suggested with good evidence (Alvarez 
et al. 1980; Ganapathy 1980; Smit & Hertogen 1980) that an impact on earth 65 
million years ago of a 10 km diameter meteorite caused the demise of the dinosaurs 
and many other species. On top of severe initial disturbance of the atmosphere and 
ocean, the debris from the impact was suspended in the stratosphere, severely attenu- 
ating sunlight so that the whole ecosystem of Earth was knocked off balance. 

Although the splash from such an impact would be spectacular it is restricted by 
the atmosphere to a very short range. The cause of debris rising high into the atmo- 
sphere is the large amount of kinetic energy which is converted into heat. Once 
geologists identify the site of such an event (e.g. could it be at  the antipodes of the 
Tertiary volcanic rocks of the Inner Hebrides?) then it is possible to compute the way 
in which waves would have propagated around the world’s oceans. 

No such splash has occurred in historic times on Earth. The highest well documented 
splash is described by Miller (1960). A landslide, caused by an earthquake, sent a 
large quantity of rock down into Lituya Bay, a fiord on the Alaskan coast on 9 July 
1958. The resulting splash of water rose 525 metres above sea level on the opposite 
side of the fiord. This was not observed directly but was readily visible afterwards 
because the splash completely removed trees and soil from the area it covered. The 
resulting wave which travelled down the fiord was seen and ‘ridden’ by people in 
3 boats, two of which foundered. Eye witness accounts are in Miller’s (1 960) descrip- 
tion as well as photographs of the area affected. 

2.9. An atmospheric effect of splashes 

Finally there is one feature of splashes which we do not see, or hear. There is an extra 
‘freshness ’ to the atmosphere near waterfalls and the sea, and even near water sprink- 
lers. It is almost certainly due to electric fields that arise from charge separation as 
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water drops collide or split. Presumably we sense it by our organs of smell, and electri- 
cally produced ozone is one suggestion; but maybe we are sensitive in other ways to 
electric fields. 

3. Pipe flows 
3.1. Laminar and turbulent $ow 

The flow of viscous fluid through circular cylindrical pipes is one of the first practical 
problems encountered in the study of fluid dynamics. The Hagen-Poiseuille solution 
for laminar flow involves only simple mathematics, is relatively easily understood, is 
readily verified experimentally and has many direct applications. 

For short pipes, inviscid flow can be a good approximation. Mass conservation and 
Bernoulli’s theorem are then sufficient to account for the flow behaviour in pipes of 
slowly varying cross-section. The ‘simple ’ property that pressure is less where the 
fluid velocity is greater often seems to be a paradox to people with no experience of 
fluid dynamics, and there are some delightful demonstrations which can help enliven 
introductory courses. For example, a light plastic ball can be held in an inverted funnel 
by blowing down it. 

Further study of fluid dynamics leads to an introduction to turbulent flow. If a 
student is fortunate he or she may see a reproduction of Reynolds’ (1883) famous 
experiment and see the startling change in flow behaviour. Failing that the film 
‘Turbulence ’ by Stewart (1969) gives a clear demonstration. Further study and experi- 
ence brings familiarity with this and other transitions to turbulence, but nonetheless 
it is a remarkable transformation to  see. A measure of its interest and importance is 
that even 100 years after the experiments, which were performed in 1880, work 
continues in order to  improve our understanding of this flow. This is hardly surprising 
when one considers that  since the beginning of this century turbulent flow has been 
considered to  be one of the most difficult of physical problems. 

We are still a long way from understanding turbulent flows. To some extent we 
qualitatively understand what is happening but i t  is not possible to predict turbulent 
flows except in those well defined cases where numerous experiments have led to 
reliable empirical rules. Happily many practical cases, such as flow through pipes, do 
lie within this field, at least for Newtonian fluids. 

If someone has become fully familiar with turbulent pipe flows and the large 
increase in drag associated with turbulence, it can come as a considerable surprise 
to find that a tiny amount of an additive can reduce the drag substantially. For 
example, 20 parts per million of polyox, a long chain polymer, can reduce drag by 
50 yo. Berman (1978) reviews the subject. 

Concentrated polymer solutions, or molten polymers, have many even more striking 
phenomena associated with their flow through pipes. Many involve their elastic 
behaviour, this includes a ‘recoil’ effect when a driving pressure gradient is stopped 
and the ‘die-swell’ effect where fluid swells considerably after flowing out of a tube. 
For these and other flows the book by Bird, Armstrong & Hassanger (1977)) chapter 3, 
is a good source. 

3.2. Shock waves and vortex rings 

For compressible fluids there is aIso a transition to turbulent flow, but with the added 
complication of variable density and temperature. Perhaps the dominant aspect here 
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is t,hat exit velocities from a uniform pipe are limited by the velocity of sound in the 
gas. JIaiiy text books on compressible flow ignore this particular problem, but 
Shapiro ( I  953) gives a full account of it. 

There are other aspects which can dominate gas flow. Turbulence in the flow, and 
particularly fluctuations of input conditions, lead to noise. I n  large industrial instal- 
lations sound levels can reach 200dB. That means the sound intensity is 1020  times 
the OdR standard, which corresponds, for certain loudness scales to  a root mean 
square pressure fluctuation level of 2 x lo-5Nm-2. It takes little calculation to show 
that 200 dB corresponds to  sound waves with pressure variations greater than one 
atmosphere. Clearly such waves are not linear and rapidly steepen to form shock waves. 
If t h e  existence ofsueh shock waves is not allowed for then pipes can fail due to metal 
fatigue from the shock-induced stresses. 

Unsteady flows are far more likely to develop shock waves. Even the humble dom- 
estic water supply can be troubled by the phenomenon which is then known as water 
hammer. This effect is usually deleterious, but is put to good use in the device known 
as a hydraulic ram. This consists of a length of pipe; at the low pressure end water is 
allowed to escape through a valve which automatically stops the flow as it approaches 
a preset value. The high pressure that results a t  this lower end, due to the rapid 
change of momentum of the water in the pipe when it  is stopped is then used to pump 
some water to a very much higher level or pressure than was available in the original 
pipe. Water in the pipe then starts to flow again and the sequence is repeated with a 
frequency of order 1 Hz. The device can pump a useful amount of water from any 
stream or river by using the low head available in the streamwise direction. It does 
not seem to be making any comeback despite the present awareness of energy con- 
servation. Presumably this is due to the capital costs involved, but may be due to 
ignorance or lack of supFly. The hydraulic ram is not mentioned in current textbooks 
but older works, such as Gibson (1930), give full details. 

Shock waves are induced deliberately in flows. The theory of the production of 
supersonic flows through a Lava1 nozzle is standard undergraduate material. The 
supersonic flow region is terminated by one or more shock wares. The achievement of 
high supersonic velocities is often hindered by the drop in temperature associated 
with the flow expansion since it can lead to condensaticn of the gas. For this and other 
reasons, shock waves are commonly studied in pipes of constant cross-section known 
as shock tubes. One of the most intriguing of experimental results to come from a 
shock tube is reported by Dettleff et al. (1979). 

The compression behind a shock wave can be sufficient to cause liquefaction. This 
contrasts with condensation due to expansion and for most gases it does not occur 
because of the temperature increase. It is pointed out that Landau & Lifshitz (1959) 
state that  i t  cannot occur. However for certain gases i t  can, and Dettleff e t a l .  succeeded 
in creating such a liquefaction shock wave. They used three fluorocarbons, which are 
safer to use than hydrocarbons that could also show the same behaviour. An incident 
shock wave was reflected off a glass window closing the end of the tube. The reflected 
shock wave caused liquefaction which was observed through the window. 

The formation of liquid was observed in various ways, but direct photographs 
through the glass proved to be the most remarkable. The photographs show numerous 
small ring structures in the liquid. Initially these were interpreted as spherical bubbles 
but closer scrutiny showed that they were toroidal bubbles, which implies they are 
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the cores of vortex rings. The explanation seems to be that the shock must have some 
internal structure, perhaps related to nucleation of the liquid, that leads to ‘droplet ’ 
non-uniformities. These droplets impinge on the liquid behind the shock on much the 
same way as the drops described in $ 2 . 5  fall into water and cause a vortex ring motion. 
There are good photographs in Dettleff et al. (1 979). 

3.3. Oscillating $ow and mass transfer 

A shock propagating along a tube is a single event but it is quite easy to force a flow 
so that repetitive events or oscillations are set up and these can involve shock waves. 
The Hartmann-Sprenger tube is such a case. It is a closed tube and the oscillations 
are caused by a supersoiiic or possibly subsonic jet of gas directed a t  the open end. 
As well as very considerable noise generation, there is a rapid accumulation of heat 
a t  the closed end of the tube. For example, experiments with wooden tubes lead to 
charring of the wood. Brocher & Maresca (1973) describe experiments in tubes of 
differing materials with different gases. 

Gentler oscillations, in either open or closed pipes are the basis of many musical 
instruments. The excitation of the various modes of oscillation occurs in various ways. 
One way, relevant to flutes and organs, is by eddies shed from a sharp edge. This is 
reviewed by Fletcher (1979) and, rather strangely, a preceding review in the same 
volume (Rockwell & Naudascher 1979) is on the same topic. Even more peculiar is the 
fact that  they have only two references iri common. More on musical instruments can 
be found in Kent (1977) and Smith & Mercer (1979). 

Oscillatory flow, often in combination with a net mean flow, is characteristic of 
flow in many biological pipes and tubes; for example consider your windpipe and 
arteries. Expertise in fluid dynamics which has developed in engineering fields has 
been applied to many biological systems in the last twenty years. It was rather amusing 
to find the Director of the Royal Aircraft Establishment writing on the swimming of 
fish (Lighthill 1960), but it is a logical extension of aeronautical studies. Now it seems 
that engineering can learn from biological applications. 

Such an example was brought to the attention of readers of this journal by Sobey 
(1980) and Stephanoff, Sobey & Bellhouse (1980). Their aim is to understand why a 
device developed by Bellhouse et al. (1973) for oxygenating blood worked so well. 
The device allowed oxygen to diffuse through a membrane into blood in a corrugated 
channel. The diffusion resistance of the device is only 10% more than that of the 
membrane itself. 

The blood flows in a channel, each wall of which has transverse ripples caused by 
the membrane taking up a curved from between each transverse support. Numerical 
computations and boundary layer calculations (Sobey, 1980) are supported by experi- 
ment (Stephanoff et al. 1980). These show that with each oscillation the flow into an 
expansion of the chancel follows the wall a t  first, then separates and forms an eddy. 
For steady flow such an eddy would impede mass transfer, but with an appreciable 
oscillatory component, particularly one causing flow reversal, the changing flow 
sweeps the eddy to the centreline of the channel allowing avery considerable enhance- 
ment of mass transfer. 

All this occurs for maximum Reynolds numbers of O( 100). The same type of trans- 
fer enhancement may well occur with much larger Reynolds numbers but then the 
greatly increased mixing of tnrbulent flows renders the enhancement less important. 
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This type of device could be valuable for the multitude of industrial processes which 
involve mass transfer in viscous fluids, and particularly so for the more common 
requirement of heat transfer in heat exchangers. 

3.4.  Blowing hot, cold and luminous 

More complicated flows in pipes lead to  further possibilities. If swirl occurs all sorts of 
phenomena appear. Batchelor’s (1967) book gives an indication of the complications 
in S; 7 .5.  The flow cannot always accommodate a change in pipe cross-section smoothly 
and this or other circumstances can lead t o  the phenomenon of vortex breakdown 
which also occurs in the leading edge vortex of delta wings as Batchelor shows (figure 
7.5.7).  A review of vortex breakdown is given by Hall (1972) and recent experimental 
measurements are described by Faler & Leibovich (1978). 

If the air is fed into a tube tangentially to form a strong vortex flow, and the mean 
flow each side of the entry is forced to differ, temperature differences arise. I n  par- 
ticular, in a Ranque-Hilsch vortex tube one end, a t  some distance from the entry, 
has a large or circumferential orifice and the other end, near the entry has a small 
centrally placed orifice. The air escaping from the large orifice is heated and the air 
from the small opening is colder than the incoming air. Escudier, Bornstein & 
Zehnder (1 980) give detailed flow measurements with water in a vortex tube closed at 
the entry end. Even so there is a return axial velocity toward the closed end in some 
of their measurements, and most show a marked minimum velocity, on the axis of 
the tube. It would be interesting to  try and compare these profiles with the various 
exact viscous solutions of Donaldson & Sullivan (1960). An account of theory and 
experiment including temperature effects is given by Sibulkin (1 962). Another 
example of disjoint work on a subject occurs here, Escudier et al. (1980) and Sibulkin 
(1962) have no references in common. The device is used for refrigeration in some 
circumstances but its efficiency is too low for widespread use in that area. Papers 
which are more practically orientated are Metenin (1960) and Parulekar (1961). 

If a vortex tube is driven with air a t  a supersonic velocity, then Lavan & Fejar 
(1965) report that  the centre of the tube glows. This only occurred when the test 
section was made of transparent and non-conducting material. No luminescence was 
observed in a metal tube. A study of the phenomena indicated that it is due to  a glow 
discharge. An electric field is caused by drops of condensed water carrying charge to 
the tube walls. The only snag with this hypothesis seems to  be that the efficiency of 
charge separation appears to be much higher than might be expected from theoretical 
estimates. 

3.5. Other warm devices 

Another ingenious tube is the ‘heat pipe’. This provides efficient heat transfer for 
moderate distances with small temperature differences. The heat is carried by a 
vapour which condenses at the cooler end. The resulting liquid returns by capillary 
action along a wick contained within the tube. Full details are given in the monograph 
by Chisholm (1971). 

When fuel is burnt i t  is usually desirable to enhance its rate of burning in some way, 
and a t  the same time to  guide combustion products away from the incoming air 
supply. The inventor of the chimney found a very effective device to  achieve both 
these aims. My own childhood experience suggests that the chimney may have been 
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discovered by observation of the effects of and on a fire at the base of a hollow tree. 
Modern practice on dispersal of combustion products has lead to the construction of 
chimneys higher than 350 metres. 

Similar simplicity for effecting rapid combustion and directing the combustion 
products is found in a less wellknown invention (E. P. Peregrine, private communica- 
tion). It again consists of a pipe with no moving parts. The pipe has a wide almost 
spherical combustion chamber, which with an exhaust pipe of suitable length forms 
a Helmholtz resonator. The inlet which is opposite to the exhaust is partially obstruc- 
ted and short. Combustion is an oscillatory process and a large amount of fuel can be 
burned in a small space. If appropriate the exhaust could also provide thrust. The main 
drawback of this device is that it is so noisy as to be devoid of practical value. 

4. Epilogue 
There is much in fluid mechanics to fascinate us. Clearly an illustrated book is 

needed to do the subject justice. Who can fail to admire a t  least some of the shapes 
that arise from the interaction of fluids with solids ‘1 The sweeping curves of sand dunes 
arise from a direct interaction. The aerodynamic shapes of seagulls and thistledown 
arise from an evolutionary interaction. Technological evolution has led us to some 
elegant ships and aircraft. Of these, yachts ought to be the most respected; they use 
both the sea and the air, and occupy a position which nature shuns. The Portuguese 
man-0’-war, Physalia physalia, and one of its close relatives are the only creatures I 
am aware of which live almost entirely on the surface of the oceans. 

Finally, a fluid mechanics brainteaser. The two photographs in figure 9 can have the 
same, very specific, title. What is it Z 
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FIGURE 9. (u)  and ( b )  are both ‘An undular bore generating some turbulence’. ( a )  is a bore with 
capillary waves on a few millirnetres depth of water. Small fla.ke-like aluminium particles in the 
water help to show the flow patterns. ( b )  is a tidal bore on the River Severn, with gravity waves 
which break in the shallower water near the shore. 
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